Friday, August 29, 2008

Farmers of Forty Centuries Tramps Afield


On March 31st we took the 8 A. M. train on the Shanghai-Nanking railway for Kunshan, situated thirty-two miles west from Shanghai, to spend the day walking in the fields. The fare, second class, was eighty cents, Mexican. A third class ticket would have been forty cents and a first class, $1.60, practically two cents, one cent and half a cent, our currency, per mile. The second class fare to Nanking, a distance of 193 miles, was $1.72, U. S. currency, or a little less than one cent per mile. While the car seats were not upholstered, the service was good. Meals were served on the train in either foreign or Chinese style, and tea, coffee or hot water to drink. Hot, wet face cloths were regularly passed and many Chinese daily newspapers were sold on the train, a traveler often buying two.
In the vicinity of Kunshan a large area of farm land had been acquired by the French catholic mission at a purchase price of $40, Mexican, per mow, or at the rate of $103.20 per acre. This they rented to the Chinese.
It was here that we first saw, at close range, the details of using canal mud as a fertilizer, so extensively applied in China. Walking through the fields we came upon the scene in the middle section of Fig. 92 where, close on the right was such a reservoir as seen in Fig. 58. Men were in it, dipping up the mud which had accumulated over its bottom, pouring it on the bank in a field of windsor beans, and the thin mud was then over two feet deep at that side and flowing into the beans where it had already spread two rods, burying the plants as the engraving shows. When sufficiently dry to be readily handled this would be spread among the beans as we found it being done in another field, shown in the upper section of the illustration. Here four men were distributing such mud, which had dried, between the rows, not to fertilize the beans, but for a succeeding crop of cotton soon to be planted between the rows, before they were harvested. The owner of this piece of land, with whom we talked and who was superintending the work, stated that his usual yield of these beans was three hundred catty per mow and that they sold them green, shelled, at two cents, Mexican, per catty. At this price and yield his return would be $15.48, gold, per acre. If there was need of nitrogen and organic matter in the soil the vines would be pulled green, after picking the beans, and composted with the wet mud. If not so needed the dried stems would be tied in bundles and sold as fuel or used at home, the ashes being returned to the fields. The windsor beans are thus an early crop grown for fertilizer, fuel and food.
This farmer was paying his laborers one hundred cash per day and providing their meals, which he estimated worth two hundred cash more, making twelve cents, gold, for a ten-hour day. Judging from what we saw and from the amount of mud carried per load, we estimated the men would distribute not less than eighty-four loads of eighty pounds each per day, an average distance of five hundred feet, making the cost 3.57 cents, gold, per ton for distribution.
The lower section of Fig. 92 shows another instance where mud was being used on a narrow strip bordering the path along which we walked, the amount there seen having been brought more than four hundred feet, by one man before 10 A. M. on the morning the photograph was taken. He was getting it from the bottom of a canal ten feet deep, laid bare by the out-going tide. Already he had brought more than a ton to his field.
The carrying baskets used for this work were in the form of huge dustpans suspended from the carrying poles by two cords attached to the side rims, and steadied by the hand grasping a handle provided in the back for this purpose and for emptying the baskets by tipping. With this construction the earth was readily raked upon the basket and very easily emptied from it by simply raising the hands when the destination was reached. No arrangement could be more simple, expeditious or inexpensive for this man with his small holding. In this simple manner has nearly all of the earth been moved in digging the miles of canal and in building the long sea walls. In Shanghai the mud carried through the storm sewers into Soochow creek we saw being removed in the same manner during the intervals when the tide was out.
In still another field, seen in Fig. 93, the upper portion shows where canal mud had been applied at a rate exceeding seventy tons per acre, and we were told that such dressings may be repeated as often as every two years though usually at longer intervals, if other and cheaper fertilizers could be obtained. In the lower portion of the same illustration may be seen the section of canal from which this mud was taken up the three earthen stairways built of the mud itself and permitted to dry before using. Many such lines of stairway were seen during our trips along the canals, only recently made or in the process of building to be in readiness when the time for applying the mud should arrive. To facilitate collecting the mud from the shallow canals temporary dams may be thrown across them at two places and the water between either scooped or pumped out, laying the bottom bare, as is often done also for fishing. The earth of the large grave mound seen across a canal in the center background of the upper portion of the engraving had been collected in a similar manner.
In the Chekiang province canal mud is extensively used in the mulberry orchards as a surface dressing. We have referred to this practice in southern China, and Fig. 94 is a view taken south of Kashing early in April. The boat anchored in front of the mulberry orchard is the home of a family coming from a distance, seeking employment during the season for picking mulberry leaves to feed silkworms. We were much surprised, on looking back at the boat after closing the camera, to see the head of the family standing erect in the center, having shoved back a section of the matting roof.
The dressing of mud applied to this field formed a loose layer more than two inches deep and when compacted by the rains which would follow would add not less than a full inch of soil over the entire orchard, and the weight per acre could not be less than 120 tons.
Another equally, or even more, laborious practice followed by the Chinese farmers in this province is the periodic exchange of soil between mulberry orchards and the rice fields, their experience being that soil long used in the mulberry orchards improves the rice, while soil from the rice fields is very helpful when applied to the mulberry orchards. We saw many instances, when traveling by boat-train between Shanghai, Kashing and Hangchow, of soil being carried from rice fields and either stacked on the banks or dropped into the canal. Such soil was oftenest taken from narrow trenches leading through the fields, laying them off in beds. It is our judgment that the soil thrown into the canals undergoes important changes, perhaps through the absorption of soluble plant food substances such as lime, phosphoric acid and potash withdrawn from the water, or through some growth or fermentation, which, in the judgment of the farmer, makes the large labor involved in this procedure worth while. The stacking of soil along the banks was probably in preparation for its removal by boat to some of the mulberry orchards.
It is clearly recognized by the farmers that mud collected from those sections of the canal leading through country villages, such as that seen in Fig. 10, is both inherently more fertile and in better physical condition than that collected in the open country. They attribute this difference to the effect of the village washing in the canal, where soap is extensively used. The storm waters of the city doubtless carry some fertilizing material also, although sewage, as such, never finds its way into the canals. The washing would be very likely to have a decided flocculating effect and so render this material more friable when applied to the field.
One very important advantage which comes to the fields when heavily dressed with such mud is that resulting from the addition of lime which has become incorporated with the silts through their flocculation and precipitation, and that which is added in the form of snail shells abounding in the canals. The amount of these may be realized from the large numbers contained in the mud recently thrown out, as seen in the upper section of Fig. 95, where the pebbly appearance of the surface is caused by snail shells. In the lower section of the same illustration the white spots are snail shells exposed in the soil of a recently spaded field. The shells are by no means as numerous generally as here seen but yet sufficient to maintain the supply of lime.
Several species of these snails are collected in quantities and used as food. Piles containing bushels of the empty shells were seen along the canals outside the villages. The snails are cooked in the shell and often sold by measure to be eaten from the hand, as we buy roasted peanuts or popcorn. When a purchase is made the vender clips the spiral point from each shell with a pair of small shears. This admits air and permits the snail to be readily removed by suction when the lips are applied to the shell. In the canals there are also large numbers of fresh water eel, shrimp and crabs as well as fish, all of which are collected and used for human food. It is common, when walking through the canal country, to come upon groups of gleaners busy in the bottoms of the shallow agricultural canals, gathering anything which may serve as food, even including small bulbs or the fleshy roots of edible aquatic plants. To facilitate the collection of such food materials sections of the canal are often drained in the manner already described, so that gleaning may be done by hand, wading in the mud. Families living in houseboats make a business of fishing for shrimp. They trail behind the houseboat one or two other boats carrying hundreds of shrimp traps cleverly constructed in such manner that when they are trailed along the bottom and disturb the shrimps they dart into the holes in the trap, mistaking them for safe hiding places.
On the streets, especially during festival days, one may see young people and others in social intercourse, busying their fingers and their teeth eating cooked snails or often watermelon seeds, which are extensively sold and thus eaten. This custom we saw first in the streets of a city south of Kashing on the line of the new railway between Hangchow and Shanghai. The first passenger train over the line had been run the day before our visit, which was a festival day and throngs of people were visiting the nine-story pagoda standing on a high hill a mile outside the city limits. The day was one of great surprises to these people who had never before seen a passenger train, and my own person appeared to be a great curiosity to many. No boy ever scrutinized the face of a caged chimpanzee closer, with purer curiosity, or with less consideration for his feelings than did a woman of fifty scrutinize mine, standing close in front, not two feet distant, even bending forward as I sat upon a bench writing at the railway station. People would pass their hands along my coat sleeve to judge the cloth, and a boy felt of my shoes. Walking through the street we passed many groups gathered about tables and upon seats, visiting or in business conference, their fingers occupied with watermelon seeds or with packages of cooked snails. Along the pathway leading to the pagoda beggars had distributed themselves, one in a place, at intervals of two or three hundred feet, asking alms, most of them infirm with age or in some other way physically disabled. We saw but one who appeared capable of earning a living.
Travel between Shanghai and Hangchow at this time was heavy. Three companies were running trains, of six or more houseboats, each towed by a steam launch, and these were daily crowded with passengers. Our train left Shanghai at 4:30 P. M., reaching Hangchow at 5:30 P. M. the following day, covering a distance along the canal of something more than 117 miles. We paid $5.16, gold, for the exclusive use of a first-cabin, five-berth stateroom for myself and interpreter. It occupied the full width of the boat, lacking about fourteen inches of footway, and could be entered from either side down a flight of five steps. The berths were flat, naked wooden shelves thirty inches wide, separated by a partition headboard six inches high and without railing in front. Each traveler provided his own bedding. A small table upon which meals were served, a mirror on one side and a lamp on the other, set in an opening in the partition, permitting it to serve two staterooms, completed the furnishings. The roof of the staterooms was covered with an awning and divided crosswise into two tiers of berths, each thirty inches wide, by board partitions six inches high. In these sections passengers spread their beds, sleeping heads together, separated only by a headboard six inches high. The awning was only sufficiently high to permit passengers to sit erect. Ventilation was ample but privacy was nil. Curtains could be dropped around the sides in stormy weather.
Meals were served to each passenger wherever he might be. Dinner consisted of hot steamed rice brought in very heavy porcelain bowls set inside a covered, wet, steaming hot wooden case. With the rice were tiny dishes, butterchip size, of green clover, nicely cooked and seasoned; of cooked bean curd served with shredded bamboo sprouts; of tiny pork strips with bean curd; of small bits of liver with bamboo sprouts; of greens, and hot water for tea. If the appetite is good one may have a second helping of rice and as much hot water for tea as desired. There was no table linen, no napkins and everything but the tea had to be negotiated with chop sticks, or, these failing, with the fingers. When the meal was finished the table was cleared and water, hot if desired, was brought for your hand basin, which with tea, teacup and bedding, constitute part of the traveler's outfit. At frequent intervals, up to ten P. M., a crier walked about the deck with hot water for those who might desire an extra cup of tea, and again in the early morning.
At this season of the year Chinese incubators were being run to their full capacity and it was our good fortune to visit one of these, escorted by Rev. R. A. Haden, who also acted as interpreter. The art of incubation is very old and very extensively practiced in China. An interior view of one of these establishments is shown in Fig. 96, where the family were hatching the eggs of hens, ducks and geese, purchasing the eggs and selling the young as hatched. As in the case of so many trades in China, this family was the last generation of a long line whose lives had been spent in the same work. We entered through their store, opening on the street of the narrow village seen in Fig. 10. In the store the eggs were purchased and the chicks were sold, this work being in charge of the women of the family. It was in the extreme rear of the home that thirty incubators were installed, all doing duty and each having a capacity of 1,200 hens' eggs. Four of these may be seen in the illustration and one of the baskets which, when two-thirds filled with eggs, is set inside of each incubator.
Each incubator consists of a large earthenware jar having a door cut in one side through which live charcoal may be introduced and the fire partly smothered under a layer of ashes, this serving as the source of heat. The jar is thoroughly insulated, cased in basketwork and provided with a cover, as seen in the illustration. Inside the outer jar rests a second of nearly the same size, as one teacup may in another. Into this is lowered the large basket with its 600 hens' eggs, 400 ducks' eggs or 175 geese' eggs, as the case may be. Thirty of these incubators were arranged in two parallel rows of fifteen each. Immediately above each row, and utilizing the warmth of the air rising from them, was a continuous line of finishing hatchers and brooders in the form of woven shallow trays with sides warmly padded with cotton and with the tops covered with sets of quilts of different thickness.
After a basket of hens' eggs has been incubated four days it is removed and the eggs examined by lighting, to remove those which are infertile before they have been rendered unsalable. The infertile eggs go to the store and the basket is returned to the incubator. Ducks' eggs are similarly examined after two days and again after five days incubation; and geese' eggs after six days and again after fourteen days. Through these precautions practically all loss from infertile eggs is avoided and from 95 to 98 per cent of the fertile eggs are hatched, the infertile eggs ranging from 5 to 25 per cent.
After the fourth day in the incubator all eggs are turned five times in twenty-four hours. Hens' eggs are kept in the lower incubator eleven days; ducks' eggs thirteen days, and geese' eggs sixteen days, after which they are transferred to the trays. Throughout the incubation period the most careful watch and control is kept over the temperature. No thermometer is used but the operator raises the lid or quilt, removes an egg, pressing the large end into the eye socket. In this way a large contact is made where the skin is sensitive, nearly constant in temperature, but little below blood heat and from which the air is excluded for the time. Long practice permits them thus to judge small differences of temperature expeditiously and with great accuracy; and they maintain different temperatures during different stages of the incubation. The men sleep in the room and some one is on duty continuously, making the rounds of the incubators and brooders, examining and regulating each according to its individual needs, through the management of the doors or the shifting of the quilts over the eggs in the brooder trays where the chicks leave the eggs and remain until they go to the store. In the finishing trays the eggs form rather more than one continuous layer but the second layer does not cover more than a fifth or a quarter of the area. Hens' eggs are in these trays ten days, ducks' and geese' eggs, fourteen days.
After the chickens have been hatched sufficiently long to require feeding they are ready for market and are then sorted according to sex and placed in separate shallow woven trays thirty inches in diameter. The sorting is done rapidly and accurately through the sense of touch, the operator recognizing the sex by gently pinching the anus. Four trays of young chickens were in the store fronting on the street as we entered and several women were making purchases, taking five to a dozen each. Dr. Haden informed me that nearly every family in the cities, and in the country villages raise a few, but only a few, chickens and it is a common sight to see grown chickens walking about the narrow streets, in and out of the open stores, dodging the feet of the occupants and passers-by. At the time of our visit this family was paying at the rate of ten cents, Mexican, for nine hens' and eight ducks' eggs, and were selling their largest strong chickens at three cents each. These figures, translated into our currency, make the purchase price for eggs nearly 48 cents, and the selling price for the young chicks $1.29, per hundred, or thirteen eggs for six cents and seven chickens for nine cents.
It is difficult even to conceive, not to say measure, the vast import of this solution of how to maintain, in the millions of homes, a constantly accessible supply of absolutely fresh and thoroughly sanitary animal food in the form of meat and eggs. The great density of population in these countries makes the problem of supplying eggs to the people very different from that in the United States. Our 250,600,000 fowl in 1900 was at the rate of three to each person but in Japan, with her 16,500,000 fowl, she had in 1906 but one for every three people. Her number per square mile of cultivated land however was 825, while in the United States, in 1900, the number of fowls per square mile of improved farm land was but 387. To give to Japan three fowls to each person there would needs be an average of about nine to each acre of her cultivated land, whereas in the United States there were in 1900 nearly two acres of improved farm land for each fowl. We have no statistics regarding the number of fowl in China or the number of eggs produced but the total is very large and she exports to Japan. The large boat load of eggs seen in Fig. 97 had just arrived from the country, coming into Shanghai in one of her canals.
Besides applying canal mud directly to the fields in the ways described there are other very extensive practices of composting it with organic matter of one or another kind and of then using the compost on the fields. The next three illustrations show some of the steps and something of the tremendous labor of body, willingly and cheerfully incurred, and something of the forethought practiced, that homes may be maintained and that grandparents, parents, wives and children need neither starve nor beg. We had reached a place seen in Fig. 98, where eight bearers were moving winter compost to a recently excavated pit in an adjoining field shown in Fig. 99.
Four months before the camera fixed the activity shown, men had brought waste from the stables of Shanghai fifteen miles by water, depositing it upon the canal bank between layers of thin mud dipped from the canal, and left it to ferment. The eight men were removing this compost to the pit seen in Fig. 99, then nearly filled. Near by in the same field was a second pit seen in Fig. 100, excavated three feet deep and rimmed about with the earth removed, making it two feet deeper.
After these pits had been filled the clover which was in blossom beyond the pits would be cut and stacked upon them to a height of five to eight feet and this also saturated, layer by layer, with mud brought from the canal, and allowed to ferment twenty to thirty days until the juices set free had been absorbed by the winter compost beneath, helping to carry the ripening of that still further, and until the time had arrived for fitting the ground for the next crop. This organic matter, fermented with the canal mud, would then be distributed by the men over the field, carried a third time on their shoulders, notwithstanding its weight was many tons.
This manure had been collected, loaded and carried fifteen miles by water; it had been unloaded upon the bank and saturated with canal mud; the field had been fitted for clover the previous fall and seeded; the pits had been dug in the fields; the winter compost had been carried and placed in the pits; the clover was to be cut, carried by the men on their shoulders, stacked layer by layer and saturated with mud dipped from the canal; the whole would later be distributed over the field and finally the earth removed from the pits would be returned to them, that the service of no ground upon which a crop might grow should be lost.
Such are the tasks to which Chinese farmers hold themselves, because they are convinced desired results will follow, because their holdings are so small and their families so large. These practices are so extensive in China and so fundamental in the part they play in the maintenance of high productive power in their soils that we made special effort to follow them through different phases. In Fig. 101 we saw the preparation being made to build one of the clover compost stacks saturated with canal mud. On the left the thin mud had been dipped from the canal; way-farers in the center were crossing the foot-bridge of the country by-way; and beyond rises the conical thatch to shelter the water buffalo when pumping for irrigating the rice crop to be fed with this plant food in preparation. On the right were two large piles of green clover freshly cut and a woman of the family at one of them was spreading it to receive the mud, while the men-folk were coming from the field with more clover on their carrying poles. We came upon this scene just before the dinner hour and after the workers had left another photograph was taken at closer range and from a different side, giving the view seen in Fig. 102. The mud had been removed some days and become too stiff to spread, so water was being brought from the canal in the pails at the right for reducing its consistency to that of a thin porridge, permitting it to more completely smear and saturate the clover. The stack grew, layer by layer, each saturated with the mud, tramped solid with the bare feet, trousers rolled high. Provision had been made here for building four other stacks.
Further along we came upon the scene in Fig. 103 where the building of the stack of compost and the gathering of the mud from the canal were simultaneous. On one side of the canal the son, using a clam-shell form of dipper made of basket-work, which could be opened and shut with a pair of bamboo handles, had nearly filled the middle section of his boat with the thin ooze, while on the other side, against the stack which was building, the mother was emptying a similar boat, using a large dipper, also provided with a bamboo handle. The man on the stack is a good scale for judging its size.
We came next upon a finished stack on the bank of another canal, shown in Fig. 104, where our umbrella was set to serve as a scale. This stack measured ten by ten feet on the ground, was six feet high and must have contained more than twenty tons of the green compost. At the same place, two other stacks had been started, each about fourteen by fourteen feet, and foundations were laid for six others, nine in all.
During twenty or more days this green nitrogenous organic matter is permitted to lie fermenting in contact with the fine soil particles of the ooze with which it had been charged. This is a remarkable practice in that it is a very old, intensive application of an important fundamental principle only recently understood and added to the science of agriculture, namely, the power of organic matter, decaying rapidly in contact with soil, to liberate from it soluble plant food; and so it would be a great mistake to say that these laborious practices are the result of ignorance, of a lack of capacity for accurate thinking or of power to grasp and utilize. If the agricultural lands of the United States are ever called upon to feed even 1200 millions of people, a number proportionately less than one-half that being fed in Japan today, very different practices from those we are now following will have been adopted. We can believe they will require less human bodily effort and be more efficient. But the knowledge which can make them so is not yet in the possession of our farmers, much less the conviction that plant feeding and more persistent and better directed soil management are necessary to such yields as will then be required.
Later, just before the time for transplanting rice, we returned to the same district to observe the manner of applying this compost to the field, and Fig. 105 is prepared from photographs taken then, illustrating the activities of one family, as seen during the morning of May 28th. Their home was in a near-by village and their holding was divided into four nearly rectangular paddies, graded to water level, separated by raised rims, and having an area of nearly two acres. Three of these little fields are partly shown in the illustration, and the fourth in Fig. 160. In the background of the upper section of Fig. 105, and under the thatched shelter, was a native Chinese cow, blindfolded and hitched to the power-wheel of a large wooden-chain pump, lifting water from the canal and flooding the field in the foreground, to soften the soil for plowing. Riding on the power-wheel was a girl of some twelve years, another of seven and a baby. They were there for entertainment and to see that the cow kept at work. The ground had been sufficiently softened so that the father had begun plowing, the cow sinking to her knees as she walked. In the same paddy, but shown in the section below, a boy was spreading the clover compost with his hands, taking care that it was finely divided and evenly scattered. He had been once around before the plowing began. This compost had been brought from a stack by the side of a canal, and two other men were busy still bringing the material to one of the other paddies, one of whom, with his baskets on the carrying pole appears in the third section. Between these two paddies was the one seen at the bottom of the illustration, which had matured a crop of rape that had been pulled and was lying in swaths ready to be moved. Two other men were busy here, gathering the rape into large bundles and carrying it to the village home, where the women were threshing out the seed, taking care not to break the stems which, after threshing, were tied into bundles for fuel. The seed would be ground and from it an oil expressed, while the cake would be used as a fertilizer.
This crop of rape is remarkable for the way it fits into the economies of these people. It is a near relative of mustard and cabbage; it grows rapidly during the cooler portions of the season, the spring crop ripening before the planting of rice and cotton; its young shoots and leaves are succulent, nutritious, readily digested and extensively used as human food, boiled and eaten fresh, or salted for winter use, to be served with rice; the mature stems, being woody, make good fuel; and it bears a heavy crop of seed, rich in oil, which has been extensively used for lights and in cooking, while the rape seed cake is highly prized as a manure and very extensively so used.
In the early spring the country is luxuriantly green with the large acreage of rape, later changing to a sea of most brilliant yellow and finally to an ashy grey when the leaves fall and the stems and pods ripen. Like the dairy cow, rape produces a fat, in the ratio of about forty pounds of oil to a hundred pounds of seed, which may be eaten, burned or sold without materially robbing the soil of its fertility if the cake and the ashes from the stems are returned to the fields, the carbon, hydrogen and oxygen of which the oil is almost wholly composed coming from the atmosphere rather than from the soil.
In Japan rape is grown as a second crop on both the upland and paddy fields, and in 1906 she produced more than 5,547,000 bushels of the seed; $1,845,000 worth of rape seed cake, importing enough more to equal a total value of $2,575,000, all of which was used as a fertilizer, the oil being exported. The yield of seed per acre in Japan ranges between thirteen and sixteen bushels, and the farmer whose field was photographed estimated that his returns from the crop would be at the rate of 640 pounds of seed per acre, worth $6.19, and 8,000 pounds of stems worth as fuel $5.16 per acre.

No comments: